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Abstract. We introduce a pair of canonical-conjugate q-deformed opemtors D. X and 
discuss the relations between the deformed operators D, X and q-series. The realizations 
o f  Some Lie symmetries, Heisenberg and quantum Heisenberg algebras are given in 
operators D and X. We show that the q-analogous Hermite polynomials are representations 
of Heisenberg and quantum Heisenberg algebras realized in this way. When q is a root of 
unity, the properties of the q-analogous Hemite  polynomials are also discussed. 

1. Introduction 

Recently a lot of attention has been paid by physicists and mathematicians to the 
q-analogous special functions, because of their importance to integrable models, 
quantum groups and the Yang-Baxter equations. These q-special functions, such as 

meters of the latter are properly fixed. 
The topic of q-series [l] is a century old and has intensive relations with other 

fields of mathematics such as number theory, classical analysis, combinatorics, additive 
number theory and Lie algebras. It is remarkable that this elegant mathematical 
invention has been found useful in physical theories such as the lattice field theories 
[2] and the hard hexagon model [l, 31 in statistical physics. The q-series naturally 
arises in Baxter's solution to the hard hexagon model. 

In  this paper, we introduce a pair of canonical-conjugate 4-deformed operators D 
and X and show that it is convenient to discuss q-series by these q-deformed operators. 
As an example of the actions of operator-valued functions on a constant, the Biedenharn 
exponential function exp,(nx) as well as sinh(nx) and cosh(ux) are obtained naturally. 
We show that the representations of Lie groups can also be given by means of the 
operators D and X and demonstrate that the q-analogous Hermite polynomials can 
be representations of Heisenberg and quantum Heisenberg algebras. 

This paper is organized as follows. In section 2, the operators X and D are 
introduced as q-deformations of the operators x and a. The relationship of these 
deformed operators with q-series is also discussed. In section 3, we discuss the 
realizations of Heisenberg and quantum Heisenberg groups in the deformed operators 
D and X and the relations between the representations of Heisenberg and quantum 
Heisenberg algebras and the q-analogous Hermite polynomials. The last section is 
devoted to some concluding remarks. 

t Mailing address. 
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2. The operators D, X and q-series 

Recently the q-analogous exponential function exp,(x) was applied in the construction 
of the q-analogous Glauber states [4]. The explicit definition of exp,(x) is 

where [n],!=[n]9[n-1]q.. .[2],[1],, and [ ~ ] , = ( q ~ - q - ~ ) / ( q - q - ' ) .  In fact, the 
q-exponential function is nothing but the eigenfunction of the q-differential operator 
D, just as the ordinary exponential function exp(x) is the eigenfunction of the differen- 
tial operator J = J/Jx. D is defined via its action on an arbitrary function f ( x )  [SI 

As stressed in [6,7], whenf(x) is analytic, D has a realization in the ordinary differential 
operator J. The D operator has been applied in the studies of quantum groups and 
their representations [ S ,  81, and has proved to be a useful tool. To gain more information 
about this operator, it is necessary to h o w  about its canonical conjugate, X.  In this 
section, we give the explicit expression of X, and verify that it is the canonical conjugate 
of D. The parameter q that appears in both X and D will be called the deformation 
parameter in this paper, which is a non-zero real number. When q + 1, X + x and D + a. 

Let us begin with introducing a function ((y, x) as follows 

sinh(yx) y2"x*" Y 
s(y'x)' x s i n h y = z o ( Z n + l ) !  s inhy (3) 

where y = log q. It is obvious that c(y, x )  and its inverse (((y, x))-' are both well 
defined for arbitrary values of y and x. In the following, we will deal frequently with 
the operator-valued function 

and its inverse. For x being an arbitrary real number, q,, and 7;' are well defined. 

and X, 
Now we are in a position to introduce a pair of canonical-conjugate operators D 

( 5 )  
1 

D--[xJ], = J.7 ,  
X 

x ' 7;'x. 

Obviously 

9-1 
D+J 

x - x. 9-1 

It is important to note that 

D X = J . x  

XD=x .J  
(7) 
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and 

ID, XI = [a, XI = 1 

Therefore the algebra generated by the operators D, X and XD is isomorphic to the 
differential operator algebra generated by a, x and xa (the Heisenberg algebra). 

It is easy to see from its action on an analytic function f ( x )  that D is a difference 
operator with step ( q  -q-')x, satisfying (2). X is a q-analogous 'coordinate' operator 

related to the q-series, an interesting mathematical object. 
To see this point, let us observe the properties of the operator-valued function 

F i x ) .  For the sake of simplicity, we assume that F (x )  is an analytic function defined 
over R (the field of real numbers). F(x)  can always be expanded into Taylor series: 

""A ,Le ro"n"i^", ,.,.":.."̂+~ ^C n TI-" --Î _ ,...I.,- __^_^  -.. _c " .. .L.. '. :. I a.. 
YI~U .U+ I-UYLILIPI U U L L J Y ~ ~ L L  VI Y .  L U G  ~=iuanauIc- piuyeriy 01 A IS inui 11 I> nccrriy 

m 

F ( x ) =  1 c"x" 
"-0 n !  

where c. are coefficients in C. We define the operator-valued F(X) as 
m 

F ( X ) =  1 &X". 
n !  

We are interested in the actions of F(X) on an arbitrary analytic functionf(x) defined 
on R 

F(X) . f (x )=  T X " . f ( x )  
n = O  n .  

and especially the case of f (x )  = 1, 

If one notices that 

it is easy to see that 
m 

F ( X ) . l =  1 X ". (14) .-0Cn1,! 
As an example, we look into the operator-valued functions exp(aX), sinh(aX) and 
cosh(aX) for a ER, especially its action on 1, 

(ax)" 
exp , (ax)=exp(aX) . l=  1 - 

"=o [ n ] , !  

(ax)*"" 
sinh,(ax) = sinh(nX). 1 = 1 

n = ~  [2n  + 114! 

= f(exp,( ax)  - exp,( -ax)) 

= $(exp,(ax) +exp,( -ax)). 
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The Biedenharn exponential function [4] exp,(x) naturally appears, which is nothing 
but the eigenfunction of the difference operator D, i.e. 

D exp,(nx) = 01 exp,(ux). (16) 
It is interesting to see that sin,(ux) = i sinh,(-inx) is no longer periodic; here we give 
five of its zero-points: 

0, *S[31,( 1 f J q $ ) / 2  

Similar to the differential operator realizations of the semisimple Lie algebras, we 
have new realizations of such algebras uia the operator D and its conjugate X.  Suppose 
that there is a matrix representation { M n }  for the semisimple Lie algebra A; then the 
new realization is simply 

As an example, we give such a realization for the SU(2) algebra explicitly 

(is) i, = x-,D, i_ = ;1C2D, L - 3 - ; [ x , D , - x 2 D 2 ) .  - L  

The representations p, are constructed as 

When the generators act in this space, we have 
A 

L&%)=(j* m+ l ) l j ,  m * I )  

L3Ij, m ) =  mlj, m). 
A h 

It should be stressed that the above relations hold when both their sides act on an 
arbitrary analytic function f ( x , ,  x2). In particular, when f ( x , ,  xJ is a constant, we 
have the j-states 

X j + m  j -m 

[ j+  m],![j- m],! 
e I x2 

lj, m )  = 11, m)'  1 = 

which seem to be identical to the j-states for the SU,(2) quantum algebra 19, IO]. Of 
course, the actions of the generators on the states are still of a classical type 

L.& m) = (jf m + l ) l j :  m f 1)  
(22) 

&lj, m ) =  mlj, 4. 

3. The q-Hermite polynomial and the HJ4) and H(4) algebras 

Now we consider a system with the following Hamiltonian 
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where t should be understood as  a non-local (pseudo-) potential. It is obvious that 
when q +  1, we have 

which is the Hamiltonian for the simple harmonic oscillator system. If we introduce 
the operators 

a - - - ( D + X )  i 
Jz 

Jz 
a t  =e - 1 ( - D  + X )  

N = a ' a  

then it is easy to check that kq = N+f and a, at and N form the Heisenberg algebra 

[a ,a']=l  
[ N , a ] = - a  
[N,a t]=at .  

Therefore the Hamiltonian can be diagonalized. 
It is interesting to note that this system is formally identical to the ordinary system 

of simple harmonic oscillator, with each state being the Hermite polynomial times a 
Gaussian function (both operator-valued), i.e. 

and 

where [ n / 2 ]  is the biggest positive integer less than n / 2 .  Therefore the formal 
Schrodinger equation reads 

f i 9 $ " ( X )  = E.$(X).  (29) 
It should be noticed that $ ( X )  are not true solutions to this Hamiltonian system (we 
call them the pseudo-solutions), because that X is not a coordinate, but an operator. 
The exact meaning of the above equation is that it holds when the both sides of the 
equation act on an arbitrary analytic function f (x), i.e. 

e q $ ( X ) . f ( x )  = E . & ( X ) . f ( x )  (30) 
and $ ( X ) . f ( x )  are at all the solutions to the system and the Hamiltonian depends 
on the details of f ( x ) .  To avoid ambiguities, we choose the simplest case of f ( x )  = 
constant 

where &(x) is just the q-analogous Hermite polynomial, 
L"i21 

ciJx)= 1 (2x) "->* 
k ! [ n - 2 k I q !  
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It is not difficult to check that the q-analogous Hermite polynomial satisfies the 
following q-analogous recursive relations 

Df in(x)  =2nfin_,(x) 

fin+,(x) =2x . f i n (x )  -2nfin-,(x) 

&(-a-) =(-l)" 'q(x), 

f iJM = E"J"(X1. 

The Schrodinger equation for this system is 

(33)  

(34) 
Now we turn to the system of Q-deformed oscillator [4,11-141 with quantum group 

Ho(4) symmetry. The HQ(4) algebra has been shown phenomenologically to be a good 
candidate for the symmetry of vibrating diatomic molecules [ 161. The Hamiltonian for 
this system is 

H =t(A,Ab+AbAQ) (35) 
where we have introduced the Q-analogous creation and annihilation operators 

A, = a m  A & = m a '  Q = e r  (36) 

(37) 

and 
N =  ata = -1D2+'X2-' 

2 2 2 .  

One can show without any difficulty that A,, Ab  and N give the realization of the 
Q-oscillator algebra 

[ N ,  A,l=-A, 
which is a quantum algebra with the co-product, co-unit and antipodal mapping well 
defined [6]. According to [4, 11-15], the infinite dimensional representation of the 
Q-oscillator algebra is isomorphic to that of the simple harmonic oscillator algebra in 
(31), i.e. 

The Schrodinger equation is 

H(X)+.(X)' 1 = &"W' 1 (40) 

where the energy spectrum is En =f([n],+[n + 11,). The pseudo-wavefunctions are 
descendent states from the pseudo-vacuum state &(X) .  1 with the vacuum defined by 
A&,(X). 1 = 0, and 
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For Q not a root of unity, the properties of the above solutions to the system are like 
those to the linear oscillator system [9, 131, i.e. every Fock state can be raised or 
lowered to a higher or lower state by the actions of the q-analogous creation or 
annihilation operators. 

The higher excitation states are 

Therefore the Hilbert space of this Q-deformed system is 

~ = { $ , , ( x ) ,  n =o, 1.2 , .  . .) 

A&x) = + q & : ( x )  

Ab&(x)=-&+i( 1 (45) 

N ~ . ( x )  = n i b ) .  

(44) 

and the actions of the generators yield 

However, if Q is a root of unity, strange properties may appear. Suppose that p is 
the least positive integer such that Q" = f l ,  then [p10 = 0. One will encounter sin- 

or the solutions to the system [14]. The representation is 
nlslnr;t;nc IIIh;lp m m n n e i n n  thp m-mLnn+o+innr nf tho ALinFnrmnA nrrilln+nr nlnnhm 
6 V L Y L L L . " "  .,...a" -"".p,"l.6 L1.U L*y.*"*..LYL.U'." U, L.L* ..-V'.""."V "I..I.IYL". Y.6'"LY, 

(A')" 10). n =o, 1.2,. . . . V =  I n ) = -  (46) 

When p = 1, the Q-deformed oscillator is identical to the linear oscillator. If p is 
a positive integer greater than 1, however, the Fock space constructed above is 
decomposed into infinite invariant subspaces 

I I m  

m 

v=u v; 
I=0  

where 
I A t  \ "  1 

V,= lpl+n)=- '"" Ipl),n=O,1,2 ,..., p - ~ j .  ' i  m 

(47) 

In the particular case of p = 2, we get the complete irreducible Fock spaces for the 
Q-oscillator as follows 

v: = (12/), 121 + l)} I = O ,  1 , 2 , . .  .. (49) 

And it can be checked easily that in the space V i ,  the operators for the @oscillator 
satisfy the following relations 

[A,, Ab],. = 1 (A;)' = (A0)' = 0. (50) 

4. Concluding remarks 

In this paper, we explicitly constructed the representations of the Lie and quantum 
Heisenberg algebras via the new operators D and X, which are formal functions of 
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operator X. We obtained functions of coordinate x and the extra parameter q (for 
quantum groups, there is another independent Q, the deformation parameter) through 
their actions on an arbitrary analytic function. These q-series-like functions are poly- 
nomials of finite terms or series of infinite terms with the factorials in the expansions 
replaced by  q-number factorials such as n !  replaced by [n],!, etc. This is a systematic 
way to get q-series and their analogous recursive relations and other properties from 
the ordinary special functions or series. 

We know that quantum groups are potential dynamical symmetries in some physical 
systems involving the violations of the perfect Lie symmetries. Among such systems, 
we single out the well known Heisenberg XXZ spin chain model [3,5], where the 
deviation of Z from X induces the violation of SU(2) symmetry, and the newly 
proposed quantum group theoretic approach to vibrating and rotating diatomic 
molecules, where the rigid rotational and linear vibrational symmetries SU(2) and 
H(4) are violated 1161. These violations are shown to be described (for the latter 
phenomenologically up to now) by the quantum group symmetries. One of the essential 
guarantees that allows us to do so is the fact that the systems in which quantum group 
symmetries are realized and the systems in which Lie group symmetries are realized 
correspond to the same eigenfunctions but a different energy spectrum. 

However, it is interesting to notice that, in the present approach, the eigenstates 
are different from the ordinary case but possess the same energy spectrum. The new 
results of this paper may bring new possibilities to these studies. 
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